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Abstract 

Standard textbooks on statistical theory usually include statistical tables 

for the Normal, t, 2χ  and F distributions. These tables are designed to test 

hypotheses at a fixed significance level (usually 5% or 1%), as is required 

for ‘classical hypothesis testing’, but these tables are inappropriate to test 

the ‘p-value’ at levels such as 2% or 3% as required by the ‘probability 

value’ approach. This paper presents new versions of these three tables 

which, if widely adopted, could allow researchers to discard classical 

hypothesis testing in favour of the probability level approach, as 

recommended by many contemporary statisticians. 

Over the last hundred years, statisticians have developed a standard approach to 

testing a hypothesis: this is often referred to as ‘classical hypothesis testing’, and 

requires the researcher to adopt a significance level (usually 5% or 1%) with which to 

compare a test statistic such as a T-ratio. The level of significance should be chosen 
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in advance, to ensure it “has not been manipulated in order to produce a conclusion 

satisfactory to the tester” (Yeomans [9], p. 82). This classical approach is implicit in 

the way tables are reproduced in standard statistical textbooks such as Kazmier and 

Pohl ([4], pp. 537-544). But a researcher’s decision to adopt either the 5% or 1% 

significance level can be critical. Suppose Anne (economist) tests the claim that the 

Keynesian multiplier is one, and hence government spending cannot cure a recession. 

Anne finds the regression coefficient significant at the 3% level, and adopts the 1% 

significance level - she does not reject the claim that the multiplier equals one. Ben 

(another economist), analyzing the same data but adopting the 5% significance level, 

would draw the opposite conclusion: the multiplier is significantly different from one. 

Should politicians believe Anne, or Ben, when deciding whether or not to spend 

government money to create jobs? Politicians reading opposite conclusions from the 

same data might decide to close down all university economics departments as 

worthless! 

A prejudiced economist could use the classical approach to support whichever 

side of the above debate he or she prefers: 

“If you cannot prove what you want to prove, demonstrate something else 

and pretend that they are the same thing. In the daze that follows the 

collision of statistics with the human mind, hardly anybody will notice the 

difference.”  (Huff, [3], p. 72). 

Anne cannot reject the Keynesian economics claim (that the multiplier is more 

than 1); but she can say that the result is not statistically significant (at 1%). By 

adopting the 1% significance level (and hence failing to reject the hypothesis that the 

multiplier is one), Anne can give the impression that the Keynesian view has been 

disproved. Similarly, by adopting a 5% significance level, Ben can appear to ‘prove’ 

the Keynesian view. Trained statisticians know how to interpret Anne and Ben’s 

results; but naive readers may not. The classical approach is good news for 

prejudiced researchers, but bad news for readers who want to know the truth: “The 

Achilles heel of the classical approach to hypothesis testing is its arbitrariness in 

selecting α” (Gujarati [2], p. 113). 

It is desirable to use a method which is less liable to produce (accidentally or 

deliberately) misleading conclusions in the mind of a typical reader. An alternative to 

‘classical hypothesis testing’ is the ‘probability level’ approach, in which the 
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researcher reports how unlikely this result would be if the hypothesis being tested is 

false (Wonnaccott and Wonnacott [8], p. 294): the reader can then decide if a 

probability level of 3% is sufficiently “credible” to justify changing government 

policy. Wonnaccott and Wonnacott ([8], p. 302) wrote “Applied statisticians 

increasingly prefer p-values to classical testing, because classical tests involve setting 

� arbitrarily (usually at 5%)”. A task force set up by the American Psychological 

Association (cited in Moore [5], p. 459) concluded “It is hard to imagine a situation 

in which a dichotomous accept-reject decision is better than reporting an actual p 

value”. Unfortunately, the ‘probability level’ approach is not always easy to use: 

“When the p value approach is used with distributions other than the Normal 

probability distribution, available tables may not provide sufficient detail to 

determine the exact p value.”  (Kazmier and Pohl [4], p. 228). 

A similar comment (in the context of the t distribution) is made by Neter, 

Wasserman and Whitman ([7], p. 337). Of the four most popular statistical tables, 

only one (the Normal distribution) is usually presented with sufficient detail to use 

the ‘probability level’ approach. In many cases, econometrics software packages 

report the probability level; but for other situations, other methods are needed. 

Morris ([6], pp. 247-252) describes how Minitab or Excel can be used to calculate    

p-values for t and 2χ  distributions. I use a commercial spreadsheet package to create 

new versions of some statistical tables (Tables 1 to 3 below); this paper shows new 

versions of three tables (t and 2χ  and F ), enabling researchers to use the ‘probability 

level’ approach in a wider range of situations. 

New Version of the t Table 

In most statistical textbooks, a t table is shown with each column representing 

one significance level; Kazmier and Pohl ([4], p. 538) are typical in showing only 

significance levels 10%, 5%, 2.5%, 1%, and 0.5% -researchers using their t table are 

unable to distinguish between (for example) 2% and 3% significance. Table 1 shows 

an alternative form of t table. The essential difference is that rows and columns have 

been transposed, to allow more probability levels to be identified; placing 

probabilities in rows (rather than columns) allows us to fit more probabilities than are 

fitted in a typical 2χ  table. 
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Table 1. Critical values of the t table 

 

The most popular use of the t table in economics is for the T-ratio (the estimated 

regression coefficient divided by the standard error of this coefficient). The T-ratio is 

a version of test statistic T, defined as 

( )
,

OLS

OLS

se
T
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β−β
=  

where OLSβ  is the regression estimate of the true β: the t test on the T-ratio implies 

testing the hypothesis ( ).0=β  This is a two-tailed test, because OLSβ  could be too 

high, or too low; so it is appropriate that Table 1 shows two-tailed probabilities. A 

one-tailed probability is half of the two-tailed probability shown in Table 1. The 

number of degrees of freedom in Table 1 is the same as previous versions of the t 

table; this for the t table is represented in this paper as n, where =n  (sample size) 

minus (number of coefficients estimated). Note that this is often represented as 

( )kn −  in textbooks. I use n rather than ( )kn −  to simplify subsequent notation. 

As an example of how to use Table 1, a researcher observing a T-ratio of 2.12 

with 40 degrees of freedom can read the p-value as 4% from the left-hand column. 

For other uses of Table 1 which require a one-tailed test, the researcher would divide 

the probability (in the left-hand column) by 2 - for example, a one-tailed test on a      

T-value of 2.12 would be half of 4%, i.e., a p-value of 2%. The critical values of the t 

distribution increase as we go down Table 1; so if we add an extra row at the bottom 

of Table 1 with a p-value of zero, then the critical value in every column would be 

infinity for this new row. 
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Statistical textbooks vary in the number of columns they use in tables of the t 

distribution. Readers can use interpolation, or simply take the nearest value of the 

number of degrees of freedom (n) shown at the top of each column. It seems 

desirable to use as many columns as we can fit on one page; the number which we 

can fit is affected by various factors, such as the font size and the number of decimal 

places used. Having chosen the number of columns, the next issue is which n values 

to place at the top of each column. I chose the n values in Table 1 (1, 2, 3, 4, 5, 6, 8, 

10, 13, 16, 20, 25, 30, 40, 50, 60, 80, 100 and infinity) on the assumption that readers 

can use interpolation to estimate the critical values of t for values such as ( ).11=n  

The right-hand column of Table 1 represents the Normal distribution (even for 

fairly small sample-sizes, the t distribution is a good approximation of the Normal 

distribution: Gujarati [2], p. 84). Hence, if a statistics textbook includes a t table like 

Table 1, a separate Normal distribution table is not needed. Classical hypothesis 

testing can still be used with the new t table in Table 1 (for a two-tailed test), by 

focusing on the 5% row or the 1% row. 

New Version of the 2χ  Table 

The aim of redesigning the t table in Table 1 is to show p-values for 1%, 2%, 

3%, and so on. A similar process can be used to produce a 2χ  table of p-values: this 

is shown in Table 2, which is comparable to a conventional 2χ  table but with rows 

and columns transposed. Table 2 shows one-tailed probabilities, for reasons 

explained below. 

Table 2. Critical values of the 2χ  table 
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A typical use for a 2χ  table in social sciences is to assess if there is a “pattern” 

in a contingency table: by comparing the actual and expected values in each cell, a      

‘chi-squared’ test assesses if row and column variables are inter-related (Morris [6], 

pp. 234-403). I use the same values of n as were used in Table 1. 

New Version of the F Table 

The F distribution is the ratio of two chi-square statistics divided by the number 

of degrees of freedom (Neter, Wasserman and Whitman [7], p. 917): 

( )

( )
.

2

2

,
n

m
F

n

m
nm

χ

χ
=  

The F distribution has a number of uses in economics, such as testing if 

( )02 =R  in a regression (Gujarati [2], p. 217), or comparing 2R  values of two 

regressions to assess if regression results are significantly worsened by removing one 

or more variables (Gujarati [2], pp. 433-434). Similarly, the Chow test for a 

structural break (Gujarati [2], pp. 222-224) compares 2R  values for different     

time-periods. These applications suggest an intuitive picture of Figure 1 cuboid, in a 

typical economics application of the F distribution: m (the numerator df ) typically 

represents the number of samples (Chow test), or number of restrictions; whereas n 

(the denominator df ) represents the size of (each) sample. 

Table 3. Critical values of the F distribution for 1=m  
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Table 4. Critical values of the F distribution for 10=m  

 

Table 5. Critical values of the F distribution for 100=m  

 

Table 3 presents critical values of the F distribution, with the associated         

one-tailed probabilities (p-values). Table 2 uses the same values of n as Tables 1 and 

2. The fact that the F distribution has two parameters (m and n) causes practical 

problems: we need to present critical F values for different numbers of n (the 

denominator df ). Table 3 only shows F values for 1=m  (the numerator df ). Tables 

4 and 5 represent the equivalent to Table 3 for higher values of m; they would be 

used to test more than one restriction, such as a ‘Chow test’ for a structural break in 

which we test if three or more time-periods are all comparable to each other. 
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Statistics textbooks could reproduce additional versions of Table 3 with other m 

values. It is difficult to assess which m values are appropriate, because the F 

distribution is used in different ways in different social and natural sciences. Many 

textbooks such as Kazmier and Pohl ([4], pp. 541-544), Neter et al. ([7], pp. 926-

929), Wonnacott and Wonnacott ([8], pp. 674-675), and Yeoman ([9], pp. 376-378) 

print nmF ,  distribution tables with about twice as many n (denominator) values as m 

(numerator) values; the relatively small number of m values may reflect the way F 

tables are used in most applications (at least in economics): m typically represents the 

number of samples or restrictions, whereas n typically represents the sample size. 

For example, an F test might be used in a Chow test for a structural break, with n 

equal to a few hundred (monthly) observations; m would typically equal 1, to compare 

two time-periods (to assess if a change in government policy had any effect). 

Researchers often interpolate both n and m, which makes it more difficult to choose n 

and m values so that linear interpolations produce reasonably accurate estimates. I 

suggest m values of 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 30, 40, 50, 60, 80, 100 are 

suitable; if statistic textbooks print three of these new F tables per page, this would fit 

on the six pages used by many textbooks for the current format of F tables (e.g., 

Gujarati [2], pp. 502-507). There seems little need for a table with a very large m 

value, because nmF ,  tends to 1 as both n and m tend to infinity (Neter, Wasserman and 

Whitman [7], p. 914). 

I suggest that all economists keep a copy of the new t, 2χ  and F tables on their 

computer, to allow an accurate approximation of a critical value (such as )73=n  not 

shown on tables in this paper. Readers can obtain electronic copies of the new t, 2χ  

and F statistical tables, by e-mailing J.G.Simister@mmu.ac.uk. These spreadsheet 

tables are flexible, and can be adapted to specific research situations by changing the 

values of m and/or n. Economists are free to duplicate copies of these three tables for 

research and teaching purposes (such as accompanying examination papers), and the 

tables can be reproduced free of charge in statistics textbooks; but copyright remains 

with the Pioneer Journal of Theoretical and Applied Statistics. 

Relationships between Normal, t, 2
χ  and F Distributions 

Mather ([10], p. 46) wrote “The four exact tests of significance [referring to the 

Normal, t, 2χ  and F distributions] were developed by different mathematicians for 
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widely different purposes at different times. It is not then surprising that their       

inter-relations have tended to be obscured”. The new versions of tables in this paper 

allow us to clarify links between distributions; I outline some of these links below. 

First, to clarify the link between the t and Normal distributions, we can use s to 

represent the sample standard deviation, and write the widely-used test statistic T 

(Gujarati [2], p. 84) as a special case of test statistic 
ns

x
T

√

µ−
=  which is a         

small-sample version of the Z-score formula 
n

x
Z

√σ

µ−
=  from the Central Limit 

Theorem (Gujarati [2], pp. 83-84); this Z-score formula is often simplified to 

( ) σµ−= XZ  (equivalent to one degree of freedom, i.e., ).1=n  Table 1 

highlights the link between the t and Normal distributions, and shows that the Normal 

distribution table is one-dimensional (standard Normal distribution tables in 

textbooks appear to be two-dimensional, because there are ten columns - one for each 

possible second decimal place of the Z-score). The Normal distribution is of little 

help to economists, because we almost never know the standard deviation of 

population parameters - we must estimate them from the sample, and hence the t 

distribution is appropriate. However, there are links between the Normal distribution 

and other distributions: for example, the Normal distribution is a good approximation 

of the binomial distribution for large numbers of trials (Neter, Wasserman and 

Whitman [7], p. 369). 

It may seem surprising that Table 2 uses one-tailed probabilities, whereas Table 

1 uses two-tailed probabilities: but this makes it easier to compare the shaded 

columns in Tables 1 and 2. Each value in the left-hand column in Table 2 is the 

square of the number in the right-hand column of Table 1 in the row for the 

equivalent probability. For example, the Normal distribution for 1.0% probability at 

the bottom-right corner of Table 1 is the probability of ( ).576.2or576.2 >−< ZZ  

This is identical to the probability that ( ),576.2 22 >Z  which is the probability 

( )63.62
1 >χ  shown in the 1.0% row of Table 2, in the shaded left-hand column. A 

large negative value of Z, or a large positive value of Z, each produces a large 2χ  

value. In a test such as the T-ratio, we would reject the hypothesis ( )0=β  if OLSβ  is 

very large or very small. Similarly, in the 2χ  test on a contingency table, we square 
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the differences between actual and expected values (to ensure positive values) before 

summing them; this prevents negative and positive errors cancelling each other out. 

In a 2χ  test, we assume that an observed value below the expected value is 

comparable to an observed value above the expected value. 

Other columns of Table 2 are approximately related to the Normal distribution 

for large values of n, because the quantity [ ( ) ( )]122 2 −−χ nn √√  is distributed as a 

standard Normal distribution (Neter, Wasserman and Whitman [7], p. 911). For 

example, we can compare the ( )100=n  column in Table 2 with the right-hand 

column in Table 1 as follows: starting with 81.135=k  from the 1.0% row of      

Table 2, [ ( ) ( )]122 −− nk √√  is approximately equal to 2.576 shown in the 1% row 

of Table 1. 

 

Figure 1. t table and 2χ  table on faces of the F distribution cuboid. 

It may be helpful to think of critical values of the F distribution as a ‘cuboid’ 

(rectangular parallelepiped), in which the vertical axis is the probability of observing 

an F value of at least this value; the horizontal axes are the numbers of degrees of 

freedom, m and n. This F distribution cuboid is represented in Figure 1. I follow 

Mather ([10], p. 47) in presenting this diagram as a cube; but the shape is not a cube, 

because the m and n values vary between 1 and infinity, whereas p-values (the 

vertical dimension) only vary between zero and one. We can place any critical value 
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of the F distribution at the appropriate point in the cuboid as ( )pnm ,,  where p is 

the p-value. 

The critical values of the F distribution in Table 3 can be compared with critical 

2χ  values in Table 2. The 2
mχ  value in Table 2 is equal to the mF ,1  value in Table 3 

divided by m; this can be written as ( ) ∞=χ ,
2

mm Fm  (Neter, Wasserman and 

Whitman [7] p. 917). Hence Tables 2 and 3 are identical for the special case of 

( );1=m  this special case is the shaded left-hand column of Table 2, which is 

identical to the shaded right-hand column in Table 3, and this column is shaded in 

Figure 1. The right hand column of Table 1 is also shaded, but it is the square root of 

(rather than identical to) the other three shaded columns. Table 3 is a vertical slice 

through the cuboid in Figure 1, in the form of a plane perpendicular to the 2χ  face, 

and at the same position as the t distribution face: each value in the left-hand column 

of Table 3 is the square of t the value in Table 1 (at the same row and column 

position, i.e., the same n and p-value). This can be expressed as [ ] nn Ft ,1
2 =  (Neter, 

Wasserman and Whitman [7], p. 917). 

Conclusions 

Statisticians seem fairly united in their view that the ‘probability level’ approach 

is better than ‘classical hypothesis testing’. In practice, most economists use 

computers; econometric software packages usually report probability values for 

standard tests, such as the T-ratio on regression coefficients, and previous researchers 

have often reported p-values based on t, 2χ  or F distributions (e.g., Currie and 

Thomas [1], p. 352). Nevertheless, many researchers continue to use classical 

hypothesis testing. Wonnaccott and Wonnacott ([8], p. 308) ask why classical testing 

is ever used, and implying the main reason is the difficulty of calculating a 

probability value: “this will involve a lot more work than using a classical test” 

(Wonnaccott and Wonnacott [8, p. 309]). Some situations require the researcher to 

carry out a test manually - for example, to test the hypothesis that the Keynesian 

multiplier could equal one. In such situations, statistical tables in the form shown in 

this paper are helpful: if the table formats used in this paper are adopted in statistics 

textbooks, then researchers should be able to report p-values as a matter of routine. 
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This paper recommends changes to three of the four most popular statistical 

tables (the remaining distribution, the standard Normal distribution, does not require 

a separate table because it is represented in the right-hand column of Table 1). As far 

as I am aware, none of these three tables have been presented in this form before. The 

key innovation in this paper is the t table, because the t and Normal distributions are 

“the most useful tables in statistics” (Wonnacott and Wonnacott [8], p. 262). In order 

to bring Table 1 to the attention of your colleagues (especially those who regularly 

write statistics textbooks), you may wish to leave a copy of the new t table on your 

department’s coffee table. 
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