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Abstract

Standard textbooks on statistical theory usually include statistical tables
for the Normal, ¢, x2 and F distributions. These tables are designed to test

hypotheses at a fixed significance level (usually 5% or 1%), as is required
for ‘classical hypothesis testing’, but these tables are inappropriate to test
the ‘p-value’ at levels such as 2% or 3% as required by the ‘probability
value’ approach. This paper presents new versions of these three tables
which, if widely adopted, could allow researchers to discard classical
hypothesis testing in favour of the probability level approach, as
recommended by many contemporary statisticians.

Over the last hundred years, statisticians have developed a standard approach to
testing a hypothesis: this is often referred to as ‘classical hypothesis testing’, and
requires the researcher to adopt a significance level (usually 5% or 1%) with which to

compare a test statistic such as a T-ratio. The level of significance should be chosen
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in advance, to ensure it “has not been manipulated in order to produce a conclusion
satisfactory to the tester” (Yeomans [9], p. 82). This classical approach is implicit in
the way tables are reproduced in standard statistical textbooks such as Kazmier and
Pohl ([4], pp. 537-544). But a researcher’s decision to adopt either the 5% or 1%
significance level can be critical. Suppose Anne (economist) tests the claim that the
Keynesian multiplier is one, and hence government spending cannot cure a recession.
Anne finds the regression coefficient significant at the 3% level, and adopts the 1%
significance level - she does not reject the claim that the multiplier equals one. Ben
(another economist), analyzing the same data but adopting the 5% significance level,
would draw the opposite conclusion: the multiplier is significantly different from one.
Should politicians believe Anne, or Ben, when deciding whether or not to spend
government money to create jobs? Politicians reading opposite conclusions from the
same data might decide to close down all university economics departments as

worthless!

A prejudiced economist could use the classical approach to support whichever

side of the above debate he or she prefers:

“If you cannot prove what you want to prove, demonstrate something else
and pretend that they are the same thing. In the daze that follows the
collision of statistics with the human mind, hardly anybody will notice the
difference.” (Huff, [3], p. 72).

Anne cannot reject the Keynesian economics claim (that the multiplier is more
than 1); but she can say that the result is not statistically significant (at 1%). By
adopting the 1% significance level (and hence failing to reject the hypothesis that the
multiplier is one), Anne can give the impression that the Keynesian view has been
disproved. Similarly, by adopting a 5% significance level, Ben can appear to ‘prove’
the Keynesian view. Trained statisticians know how to interpret Anne and Ben’s
results; but naive readers may not. The classical approach is good news for
prejudiced researchers, but bad news for readers who want to know the truth: “The
Achilles heel of the classical approach to hypothesis testing is its arbitrariness in

selecting o (Gujarati [2], p. 113).

It is desirable to use a method which is less liable to produce (accidentally or
deliberately) misleading conclusions in the mind of a typical reader. An alternative to

‘classical hypothesis testing’ is the ‘probability level’ approach, in which the
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researcher reports how unlikely this result would be if the hypothesis being tested is
false (Wonnaccott and Wonnacott [8], p. 294): the reader can then decide if a
probability level of 3% is sufficiently “credible” to justify changing government
policy. Wonnaccott and Wonnacott ([8], p. 302) wrote “Applied statisticians
increasingly prefer p-values to classical testing, because classical tests involve setting
a arbitrarily (usually at 5%)”. A task force set up by the American Psychological
Association (cited in Moore [5], p. 459) concluded “It is hard to imagine a situation
in which a dichotomous accept-reject decision is better than reporting an actual p

value”. Unfortunately, the ‘probability level” approach is not always easy to use:

“When the p value approach is used with distributions other than the Normal
probability distribution, available tables may not provide sufficient detail to

determine the exact p value.” (Kazmier and Pohl [4], p. 228).

A similar comment (in the context of the ¢ distribution) is made by Neter,
Wasserman and Whitman ([7], p. 337). Of the four most popular statistical tables,
only one (the Normal distribution) is usually presented with sufficient detail to use
the ‘probability level’ approach. In many cases, econometrics software packages
report the probability level; but for other situations, other methods are needed.
Morris ([6], pp. 247-252) describes how Minitab or Excel can be used to calculate

p-values for ¢ and x2 distributions. I use a commercial spreadsheet package to create
new versions of some statistical tables (Tables 1 to 3 below); this paper shows new
versions of three tables (¢ and Xz and F), enabling researchers to use the ‘probability

level’ approach in a wider range of situations.

New Version of the 7 Table

In most statistical textbooks, a ¢ table is shown with each column representing
one significance level; Kazmier and Pohl ([4], p. 538) are typical in showing only
significance levels 10%, 5%, 2.5%, 1%, and 0.5% -researchers using their ¢ table are
unable to distinguish between (for example) 2% and 3% significance. Table 1 shows
an alternative form of 7 table. The essential difference is that rows and columns have
been transposed, to allow more probability levels to be identified; placing

probabilities in rows (rather than columns) allows us to fit more probabilities than are

fitted in a typical x2 table.
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Table 1. Critical values of the ¢ table

two-tailed number of degrees of freedom:
probability | 1 2 3 4 5 6 8 10 13 16 2 25 30 40 50 60 80 100 infinity
100 %| 000 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 000 000 000 000 0.001
50 %| 100 082 076 074 073 072 0.71 0.70 069 069 069 068 068 068 0.68 068 068 068 0674
20 %| 308 189 164 153 148 144 140 137 135 134 133 132 131 130 130 130 129 129 1282
0 %| 631 292 235 213 202 194 186 181 177 175 172 171 170 168 168 167 166 166 1645
9 %| 703 310 247 223 210 202 193 188 183 180 178 1.76 175 174 173 172 172 171 1695
8 % 792 332 260 233 219 210 200 195 1.90 187 1.84 1.82 181 180 179 178 177 177 1750
7 %| 906 358 276 246 230 220 209 203 197 194 191 189 188 186 185 184 184 183 1812
6 %| 1058 390 295 260 242 231 219 212 206 202 199 197 195 194 192 192 191 190 1881
5 %| 1271 430 318 278 257 245 231 223 216 212 209 206 204 202 201 200 199 198 1.960
4
3
2
1
0.

Py

%| 1589 485 348 300 276 261 245 236 228 224 220 217 215 212 211 210 209 208 2054
%| 2120 564 390 330 300 283 263 253 244 238 234 230 228 226 223 222 221 220 2170
%| 3182 696 454 375 336 314 290 276 265 258 253 249 246 242 240 239 237 236 2326
%| 6366 992 584 460 403 371 336 3.17 301 292 285 279 275 270 268 266 264 263 2576
1% 636.62 3160 1292 861 6.87 596 504 459 422 401 385 373 365 355 350 346 342 339 3291

The most popular use of the ¢ table in economics is for the 7-ratio (the estimated
regression coefficient divided by the standard error of this coefficient). The T-ratio is
a version of test statistic 7, defined as

T_BOLS—B

~ se(Bors)”

where B¢ is the regression estimate of the true PB: the 7 test on the T-ratio implies
testing the hypothesis (f = 0). This is a two-tailed test, because B¢ could be too

high, or too low; so it is appropriate that Table 1 shows two-tailed probabilities. A
one-tailed probability is half of the two-tailed probability shown in Table 1. The
number of degrees of freedom in Table 1 is the same as previous versions of the ¢
table; this for the ¢ table is represented in this paper as n, where n = (sample size)
minus (number of coefficients estimated). Note that this is often represented as

(n — k) in textbooks. I use 7 rather than (n — k) to simplify subsequent notation.

As an example of how to use Table 1, a researcher observing a 7-ratio of 2.12
with 40 degrees of freedom can read the p-value as 4% from the left-hand column.
For other uses of Table 1 which require a one-tailed test, the researcher would divide
the probability (in the left-hand column) by 2 - for example, a one-tailed test on a
T-value of 2.12 would be half of 4%, i.e., a p-value of 2%. The critical values of the ¢
distribution increase as we go down Table 1; so if we add an extra row at the bottom
of Table 1 with a p-value of zero, then the critical value in every column would be
infinity for this new row.
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Statistical textbooks vary in the number of columns they use in tables of the ¢
distribution. Readers can use interpolation, or simply take the nearest value of the
number of degrees of freedom (n) shown at the top of each column. It seems
desirable to use as many columns as we can fit on one page; the number which we
can fit is affected by various factors, such as the font size and the number of decimal
places used. Having chosen the number of columns, the next issue is which n values
to place at the top of each column. I chose the n values in Table 1 (1, 2, 3,4, 5, 6, 8,
10, 13, 16, 20, 25, 30, 40, 50, 60, 80, 100 and infinity) on the assumption that readers

can use interpolation to estimate the critical values of ¢ for values such as (n = 11).

The right-hand column of Table 1 represents the Normal distribution (even for
fairly small sample-sizes, the ¢ distribution is a good approximation of the Normal
distribution: Gujarati [2], p. 84). Hence, if a statistics textbook includes a ¢ table like
Table 1, a separate Normal distribution table is not needed. Classical hypothesis
testing can still be used with the new ¢ table in Table 1 (for a two-tailed test), by

focusing on the 5% row or the 1% row.

New Version of the x2 Table

The aim of redesigning the ¢ table in Table 1 is to show p-values for 1%, 2%,

3%, and so on. A similar process can be used to produce a x2 table of p-values: this

is shown in Table 2, which is comparable to a conventional x2 table but with rows

and columns transposed. Table 2 shows one-tailed probabilities, for reasons
explained below.

Table 2. Critical values of the x2 table

one-tailed
probability

1

m:
2

3

4

5

6

8

10

13

16

2

25

30

40

50

60

80

100

infinity

100 %
50 %
20 %
10 %
9%
8%
7%
6%
5%
4%
3%
2%
1%
0.1%

0.00
0.45
164
21
287
3.06
328
354
3.84
422
41
541
6.63
10.83

0.00
1.39
322
4.61
482
5.05
532
5.63
5.99
6.44
7.01
7.82
9.21
13.82

0.00
237
464
6.25
6.49
6.76
7.6
741
781
831
895
9.84
11.34
16.27

0.00
3.36
5.99
1.78
8.04
8.34
8.67
9.04
9.49
10.03
0.7
1.67
13.28
1847

0.00 000 o002 008 027

435 536
729 856

734 934
11.03

9.24
9.52
9.84

10.64
10.95
1.28
11.66
1209
12.59
1320
1397
15.03
16.81
2246

13.36
13.70
14.07
14.48
14.96
16,51
16.17
17.01
18.17
20.09
26.12

12.34
16.98
1981
2021
2066
2115
2171
2236
2814
2412
2547
2769
3453

0.58
16.34
2047
2354
23.98
24.46
24.99
2.59
26.30
27.14
219
29.63
32.00
3925

120 227 361

695 10.96

19.34
25.04
284
2889
241
2999
30.65
34
3232
3346
35.02
3757
4531

24,34
30.68
3438
3490
3547
36.11
36.82
3765
38.64
39.88
4157
44.31
52.62

29.34
36.25
40.26
40.82
41.43
21
42.88
877
44.83
45.16
47.%
50.89
59.70

39.34
4121
51.81
5244
53,13
5390
5476
55.76
56.95
5843
6044
63.69
7340

4933
58.16
63.17
63.86
64.62
65.46
66.41
67.50
68.80
7042
7261
76.15
86.66

1548
59.33
68.97
7440
75.15
75.97
76.88
7790
79.08
8048
82.23
84.58
88.38
9961

2065 3691

79.33
90.4
96.58
97.43
98.36
99.39

99.33
111.67
118.50
119.44
120.46
121.60
122.88
124.34
126.08
128.24
131.14
135.81
149.45
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A typical use for a x2 table in social sciences is to assess if there is a “pattern”

in a contingency table: by comparing the actual and expected values in each cell, a
‘chi-squared’ test assesses if row and column variables are inter-related (Morris [6],
pp- 234-403). I use the same values of n as were used in Table 1.

New Version of the F Table

The F distribution is the ratio of two chi-square statistics divided by the number
of degrees of freedom (Neter, Wasserman and Whitman [7], p. 917):

_ Ot )fm

G
The F distribution has a number of uses in economics, such as testing if
(R2 =0) in a regression (Gujarati [2], p. 217), or comparing R? values of two
regressions to assess if regression results are significantly worsened by removing one
or more variables (Gujarati [2], pp. 433-434). Similarly, the Chow test for a

structural break (Gujarati [2], pp. 222-224) compares R? values for different
time-periods. These applications suggest an intuitive picture of Figure 1 cuboid, in a
typical economics application of the F' distribution: m (the numerator df ) typically
represents the number of samples (Chow test), or number of restrictions; whereas n
(the denominator df ) represents the size of (each) sample.

Table 3. Critical values of the F distribution for m =1

one-ailed n:
probability] 1 2 3 4 5 6 § 10 13 16 20 25 30 40 50 60 80 100 infinity
100 % 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
50 % 100 067 059 055 053 051 050 049 048 048 047 047 047 046 046 046 046 046 045
20 % 947 356 268 235 218 207 195 188 1.8 179 176 173 172 170 169 168 167 166 164
10 %| 3986 853 554 454 406 378 346 329 314 3.05 297 292 288 284 281 279 277 276 271
9 % 4937 963 610 49 440 408 372 352 336 3.26 3147 311 307 302 299 297 295 293 287
8 %| 6266 11.02 679 544 480 443 402 380 361 349 340 333 328 323 319 317 314 313 3.06
7 % 8205 1280 7.63 6.03 528 484 437 411 390 377 366 358 353 347 343 340 337 335 328
6 % 11191 1518 871 676 586 535 479 450 424 410 397 388 382 375 370 367 364 362 354
5 %| 16145 1851 10.13 7.71 661 599 532 496 467 449 435 424 417 408 403 400 396 394 384
4
3
2
1

% 20264 2351 1212 899 760 682 600 557 521 500 483 469 461 451 445 441 436 433 422
%| 44965 31.84 15.18 1087 902 800 694 639 593 567 546 530 519 506 499 494 488 485 471
%| 1012.55 48.51 20.62 14.04 1132 988 839 764 7.02 6.67 639 6.8 6.04 587 578 571 564 559 654
%| 4052.18 98,50 34.12 21.20 1626 1375 11.26 10.04 9.07 853 810 777 756 731 717 708 696 690 663
0.1%| 405284 998.50 167.0 74.14 47.18 3551 2541 21.04 17.82 16.12 14.82 13.88 13.29 12.61 12.22 1197 11.67 11.50 10.83
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Table 4. Critical values of the F distribution for m = 10

one-tailed n
probability 1 2 3 4 5 6 8 10 13 16 20 25 30 40 50 60 80 100 infinity
100 % 000 000 000 000 000 000 000 0.00 0.00 0.00 0.00 000 0.00 000 0.00 000 000 000 000
50 % 204 135 118 111 107 105 102 1.00 0.98 087 0.97 096 096 095 095 094 094 094 093
20 % 1477 438 298 246 219 203 184 173 164 158 153 149 147 144 142 141 139 138 134
10 % 6019 939 523 392 330 294 254 232 214 203 1.94 187 182 1.76 173 171 168 166 160
9% 7440 1050 567 419 349 309 260 242 222 210 200 192 187 181 177 175 172 170 164
8% 426 1189 620 450 372 327 279 253 231 218 207 198 193 186 1.83 180 177 175 168
7% 12323 1368 686 489 399 346 294 265 241 226 215 206 200 1.93 188 186 182 180 172
6% 167.86 1606 769 536 432 374 312 280 253 237 224 214 207 200 195 192 188 18 177
5% 24188 1940 879 596 474 406 335 298 267 249 235 224 216 208 203 199 195 193 183
4 % 37815 2440 1032 679 529 448 364 321 285 265 248 236 228 218 212 208 204 200 190
3% 67255 3273 1268 799 607 506 403 351 309 285 266 251 242 231 224 220 214 211 199
2 % 151360 4940 1686 1000 734 596 463 397 345 315 291 274 262 249 241 236 230 226 212
1 % 6055.85 9940 27.23 1455 1005 787 581 485 410 369 3.37 313 298 280 270 263 255 250 232
0.1% 605621 99940 129.2 4805 2692 1841 11.54 875 680 581 508 456 424 387 367 354 339 330 29

Table 5. Critical values of the F distribution for m = 100

one-tailed n

probability | 1 2 3 4 5 6 8 10 13 16 20 25 30 40 50 60 80 100 infinity
100 %| 000 000 000 000 000 000 0.00 0.00 000 000 0.00 0.00 000 0.00 000 000 000 000 0.0
50 % 218 143 126 118 114 111 1.08 106 1.05 1.04 103 1.02 1.02 1.01 101 1.00 100 100 099
20 %| 1550 447 298 243 214 196 175 163 152 145 139 135 131 127 124 1.2 12 118 112

10 %| 6301 948 514 378 313 275 232 209 188 176 165 1.56 151 143 139 136 132 129 118
9 %| 7787 1059 557 403 330 288 241 216 194 180 169 160 154 146 141 138 133 131 119
8 %| 964 1198 608 432 350 300 252 224 200 186 1.73 163 157 148 143 140 136 183 120
7 %| 12894 1377 670 467 374 322 264 234 207 192 178 168 160 1.51 146 142 137 13 12
6 %| 17562 1615 7.50 510 403 344 279 245 216 1.99 184 172 165 135 149 145 140 137 123

1
1
1
1
1
5 %| 253.04 1949 855 566 441 371 297 259 226 207 191 178 170 159 152 148 143 139 124
1
1
1
1
1

4 %| 39557 2449 10.03 642 490 407 321 276 239 217 199 185 176 164 157 1.52 146 142 128
3 %| 70349 3282 1229 753 559 457 353 300 256 231 210 194 183 170 162 157 150 146 1.8
2 %| 158327 4949 1630 939 672 536 401 335 281 251 226 207 194 179 170 164 156 151 13
1 %|6334.11 9949 2624 1358 913 699 496 401 327 286 254 229 213 194 182 175 165 160 136
0.1% 633444 99949 1241 4447 2412 16.03 957 698 517 426 358 3.00 279 244 225 212 196 187 149

Table 3 presents critical values of the F distribution, with the associated
one-tailed probabilities (p-values). Table 2 uses the same values of n as Tables 1 and
2. The fact that the F distribution has two parameters (m and n) causes practical
problems: we need to present critical F' values for different numbers of n (the
denominator df). Table 3 only shows F values for m =1 (the numerator df). Tables
4 and 5 represent the equivalent to Table 3 for higher values of m; they would be
used to test more than one restriction, such as a ‘Chow test’ for a structural break in

which we test if three or more time-periods are all comparable to each other.
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Statistics textbooks could reproduce additional versions of Table 3 with other m
values. It is difficult to assess which m values are appropriate, because the F
distribution is used in different ways in different social and natural sciences. Many
textbooks such as Kazmier and Pohl ([4], pp. 541-544), Neter et al. ([7], pp. 926-
929), Wonnacott and Wonnacott ([8], pp. 674-675), and Yeoman ([9], pp. 376-378)
print F,, , distribution tables with about twice as many n (denominator) values as m

(numerator) values; the relatively small number of m values may reflect the way F
tables are used in most applications (at least in economics): m typically represents the
number of samples or restrictions, whereas 7 typically represents the sample size.

For example, an F' test might be used in a Chow test for a structural break, with n
equal to a few hundred (monthly) observations; m would typically equal 1, to compare
two time-periods (to assess if a change in government policy had any effect).
Researchers often interpolate both n and m, which makes it more difficult to choose n
and m values so that linear interpolations produce reasonably accurate estimates. I
suggest m values of 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 30, 40, 50, 60, 80, 100 are
suitable; if statistic textbooks print three of these new F tables per page, this would fit
on the six pages used by many textbooks for the current format of F tables (e.g.,
Gujarati [2], pp. 502-507). There seems little need for a table with a very large m
value, because Foon tends to 1 as both n and m tend to infinity (Neter, Wasserman and

Whitman [7], p. 914).
I suggest that all economists keep a copy of the new ¢, x2 and F tables on their
computer, to allow an accurate approximation of a critical value (such as n = 73) not

shown on tables in this paper. Readers can obtain electronic copies of the new ¢, XZ

and F statistical tables, by e-mailing J.G.Simister @mmu.ac.uk. These spreadsheet

tables are flexible, and can be adapted to specific research situations by changing the
values of m and/or n. Economists are free to duplicate copies of these three tables for
research and teaching purposes (such as accompanying examination papers), and the
tables can be reproduced free of charge in statistics textbooks; but copyright remains
with the Pioneer Journal of Theoretical and Applied Statistics.

Relationships between Normal, ¢, x2 and F Distributions

Mather ([10], p. 46) wrote “The four exact tests of significance [referring to the

Normal, ¢, x2 and F distributions] were developed by different mathematicians for



STATISTICAL TABLES SHOWING p-VALUES AT VARIOUS LEVELS ... 83

widely different purposes at different times. It is not then surprising that their
inter-relations have tended to be obscured”. The new versions of tables in this paper
allow us to clarify links between distributions; I outline some of these links below.

First, to clarify the link between the # and Normal distributions, we can use s to

represent the sample standard deviation, and write the widely-used test statistic T’

X-p
S/ n

from the Central Limit

(Gujarati [2], p. 84) as a special case of test statistic T = which is a

small-sample version of the Z-score formula Z = 8
o/vVn

Theorem (Gujarati [2], pp. 83-84); this Z-score formula is often simplified to
Z =(X —u)/o (equivalent to one degree of freedom, i.e., n=1). Table 1

highlights the link between the # and Normal distributions, and shows that the Normal
distribution table is one-dimensional (standard Normal distribution tables in
textbooks appear to be two-dimensional, because there are ten columns - one for each
possible second decimal place of the Z-score). The Normal distribution is of little
help to economists, because we almost never know the standard deviation of
population parameters - we must estimate them from the sample, and hence the ¢
distribution is appropriate. However, there are links between the Normal distribution
and other distributions: for example, the Normal distribution is a good approximation
of the binomial distribution for large numbers of trials (Neter, Wasserman and
Whitman [7], p. 369).

It may seem surprising that Table 2 uses one-tailed probabilities, whereas Table
1 uses two-tailed probabilities: but this makes it easier to compare the shaded
columns in Tables 1 and 2. Each value in the left-hand column in Table 2 is the
square of the number in the right-hand column of Table 1 in the row for the
equivalent probability. For example, the Normal distribution for 1.0% probability at
the bottom-right corner of Table 1 is the probability of (Z < —2.576 or Z > 2.576).

This is identical to the probability that (Z 2> 2.5762), which is the probability
(x12 > 6.63) shown in the 1.0% row of Table 2, in the shaded left-hand column. A

large negative value of Z, or a large positive value of Z, each produces a large x2

value. In a test such as the T-ratio, we would reject the hypothesis (B = 0) if Borg is

very large or very small. Similarly, in the XZ test on a contingency table, we square
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the differences between actual and expected values (to ensure positive values) before

summing them; this prevents negative and positive errors cancelling each other out.
In a x2 test, we assume that an observed value below the expected value is

comparable to an observed value above the expected value.

Other columns of Table 2 are approximately related to the Normal distribution
for large values of n, because the quantity [v/ (2)(%) —V/(2n-1)] is distributed as a

standard Normal distribution (Neter, Wasserman and Whitman [7], p. 911). For

example, we can compare the (n =100) column in Table 2 with the right-hand
column in Table 1 as follows: starting with k =135.81 from the 1.0% row of
Table 2, [V/(2k) —+/(2n —1)] is approximately equal to 2.576 shown in the 1% row
of Table 1.

Probability
A

I‘e]ate
I[-abIdetO

\'\//\ \

Figure 1. 7 table and x2 table on faces of the F distribution cuboid.

It may be helpful to think of critical values of the F distribution as a ‘cuboid’
(rectangular parallelepiped), in which the vertical axis is the probability of observing
an F value of at least this value; the horizontal axes are the numbers of degrees of
freedom, m and n. This F distribution cuboid is represented in Figure 1. I follow
Mather ([10], p. 47) in presenting this diagram as a cube; but the shape is not a cube,
because the m and n values vary between 1 and infinity, whereas p-values (the

vertical dimension) only vary between zero and one. We can place any critical value
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of the F distribution at the appropriate point in the cuboid as (m, n, p) where p is

the p-value.

The critical values of the F distribution in Table 3 can be compared with critical

x2 values in Table 2. The x,i value in Table 2 is equal to the Fy ,, value in Table 3

divided by m; this can be written as (x> )/m = F,,. . (Neter, Wasserman and

Whitman [7] p. 917). Hence Tables 2 and 3 are identical for the special case of
(m =1); this special case is the shaded left-hand column of Table 2, which is

identical to the shaded right-hand column in Table 3, and this column is shaded in
Figure 1. The right hand column of Table 1 is also shaded, but it is the square root of

(rather than identical to) the other three shaded columns. Table 3 is a vertical slice
through the cuboid in Figure 1, in the form of a plane perpendicular to the XZ face,

and at the same position as the 7 distribution face: each value in the left-hand column

of Table 3 is the square of ¢ the value in Table 1 (at the same row and column
position, i.e., the same n and p-value). This can be expressed as [tn]2 = F1,, (Neter,

Wasserman and Whitman [7], p. 917).

Conclusions

Statisticians seem fairly united in their view that the ‘probability level’ approach
is better than ‘classical hypothesis testing’. In practice, most economists use
computers; econometric software packages usually report probability values for

standard tests, such as the T-ratio on regression coefficients, and previous researchers
have often reported p-values based on f, x2 or F distributions (e.g., Currie and

Thomas [1], p. 352). Nevertheless, many researchers continue to use classical
hypothesis testing. Wonnaccott and Wonnacott ([8], p. 308) ask why classical testing
is ever used, and implying the main reason is the difficulty of calculating a
probability value: “this will involve a lot more work than using a classical test”
(Wonnaccott and Wonnacott [8, p. 309]). Some situations require the researcher to
carry out a test manually - for example, to test the hypothesis that the Keynesian
multiplier could equal one. In such situations, statistical tables in the form shown in
this paper are helpful: if the table formats used in this paper are adopted in statistics

textbooks, then researchers should be able to report p-values as a matter of routine.
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This paper recommends changes to three of the four most popular statistical
tables (the remaining distribution, the standard Normal distribution, does not require
a separate table because it is represented in the right-hand column of Table 1). As far
as I am aware, none of these three tables have been presented in this form before. The
key innovation in this paper is the ¢ table, because the ¢ and Normal distributions are
“the most useful tables in statistics” (Wonnacott and Wonnacott [8], p. 262). In order
to bring Table 1 to the attention of your colleagues (especially those who regularly
write statistics textbooks), you may wish to leave a copy of the new ¢ table on your

department’s coffee table.
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